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LE’ITER TO THE EDITOR 

A limiter of critical exponent universalityS 

George A Baker Jr 
Theoretical Division, Los Alamos National Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 28 March 1984 

Abstract. We show that in three dimensions the consideration of single-spin distributions 
containing a factor of exp(As6) can lead to statistical mechanical models of dramatically 
different character from those defined by the usual field theory picture of the renormalisation 
group theory of critical phenomena. These models plainly fall outside the usual, and 
previously expected, universality class. 

In a recent paper (Baker and Johnson 1984) it was demonstrated that the notion, that 
the critical exponents in the continuous-spin Ising model are universal, is at variance 
with strong numerical evidence for an explicit two-dimensional example. The idea 
that there might be universal behaviour of fluids near their critical points is a very old 
one, going back as the ‘law of corresponding states’ to the previous century. More 
recently the idea has been mathematically formulated (Griffiths 1970) and used to 
develop a better phenomenological understanding of critical phenomena (Kadanoff 
1971). The universality hypothesis is (Kadanoff 1976) ‘that all critical problems may 
be divided into classes differentiated by: (a) the dimensionality of the system; (b) the 
symmetry group of the order parameter; and (c) perhaps other criteria. Within each 
class, the critical properties are supposed to be identical, or at worst, to be a continuous 
function of a very few parameters’. The point is that when the correlation length is 
very large only a small number of general features of the Hamiltonian matter. 

Specifically for systems with a one-dimensional order parameter it was thought 
that critical phenomena could be understood in terms of As4 Euclidean, Boson, quantum 
field theory. This argument is given by Wilson and Kogut (1974) where it is made 
plain that the work is being carried out near four dimensions and in the context of a 
perturbation expansion of the log single-spin distribution function. This line of reason- 
ing forms the starting point for the expansion in powers of E = 4 - d (Wilson and 
Fisher 1972, Wilson 1972, BrCzin er a1 1976) and the expansions in powers of the field 
theoretic renormalised coupling constant in three dimensions (Parisi 1973, Baker et 
a1 1976,1978, Le Guillou and Zinn-Justin 1977). The interpretation ofthese calculations 
as providing, for example, the critical behaviour of the three-dimensional Ising model, 
depends on the universality of hypothesis as stated above without further differentiation 

It is well known that s6 is a marginal quantity in three dimensions (see, for example, 
Ma 1976). Theories including it have been studied in connection with tricritical 

(c). 

t Work performed under the auspices of the USDOE. 
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phenomena (Wegner and Riedel 1973, Stephen et a1 1975). Pisarski (1982) has studied 
the large N-limit of ( s ~ ) ~  field theory, where N is the number of components of the 
order parameter. So far as I have been able to determine, no one has fully investigated 
the effect of such a term on the differentiation of universality classes. 

By considering ferromagnetic, continuous-spin Ising models whose single-spin 
distribution is of the form exp( us2 + bs4 + cs6) we are able to demonstrate the existence 
of models whose truncated four-spin correlation functions are dramatically different, 
in fact of the opposite sign entirely, from those of models whose single-spin distribution 
function is restricted to be of the form exp(as2 + bs4). These models, arguing even 
from the opposite sign of the four-spin correlation function alone, must fall outside 
the universality class produced by the usual, field theoretic picture of the renormalisa- 
tion group theory of critical phenomena based on As4 Euclidean, Boson quantum field 
theory. 

We introduce the lattice cut-off version of h6: d6: d Euclidean, Boson field theory 
as given by the partition function 

*a- 

-m 

where : : denotes the normal ordered product, a is the lattice spacing, the sum over 
r is over the d-dimensional hyper-simple cubic lattice, the sum over { 6) is over half 
the nearest neighbours, and M-'  is a formal normalisation constant. Specifically 
(Baker 1975) 

:42 :  = lp2- c, :44: = 44 - 6C42 +3C2, (2) 
:46: = 46- 15C#~~+45C~4~-  15C3, 

where C is the commutator, 
1 / 2 a  .=I.. . j  dk 

m i  +4a-2 x(6) sin2( .rrk * 8)' 
- l /2a  

Note: (SI = a. It is convenient to rewrite (1) as a continuous-spin, Ising model 
+m 

-m 

with the connections 

4, = [ K / a d - 2 ] ' / 2 ~ ,  A o =  K3C16-2dA6, 

&= K2a4-d(A4- 15c&), f i r  = ( K a d ' 2 ) ' / 2 H n  (5) 
A = K (2d + mia2 - 6 Ca2A4 + 45 CZa2A6). 

The formal constant M in equation (4) has also changed from that in equation (1 ) .  
Since we will treat in this paper mainly quantities which are independent of the 
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amplitude renormalisation, we impose the following one 
+m 

I. s2  exp( -2s' - g0s4 - i o s 6 )  ds 
( 6 )  

-a - 
1 = ( s 2 ) H = K = O -  +m 

5. -1 exp( -2s'- g0s4 - i o s 6 )  ds 
-a2 

which defines the function 2(go, io), and absorbs the extra freedom from our introduc- 
tion of the parameter K. K has the interpretation of an inverse temperature. 

Tbe first step in our investigation is to compute the renormalised coupling constant 
(let Hr = H henceforth), which is defined as 

g = - (a2X/aH2) / [X2Sd l ,  (7) 

where in terms of expectation values with respect to the partition function (4), x is 
the magnetic susceptibility, and 6 is the correlation length in units of the lattice spacing. 
Thus, explicitly for K less than the critical value K ,  

We begin this computation by a first-order perturbation expansion in go and io small. 
y e  proceed by expanding powers of K, and retain all the terms which contain go or 
A. linearly. We employ the linked-cluster expansion method (Wortis 1974). This 
method expresses the series directly in terms of the cumulants of the single-spin 
distribution, equation ( 6 ) .  A little calculation with H = 0 shows, after the elimination 
of 2 by means of condition (6) ,  that the 2nth cumulants, M:" in the usual notation, 
are, to linear order in go and io, 

M i  = 1.0, M :  = -24& - 360i0, 

Mz = -720i0, M:" = 0, n 2 4. (9) 

M i  and all M,  with n odd vanish. We will need x and 6 to zero order in io and io 
for this calculation and d2X/aH2 to linear order in go and io. Thus, we need to consider 
only those high-temperature graphs which have any number of vertices which are the 
meet of two lines plus one four-line or one six-line vertex. Baker and Kincaid (1981) 
have computed the four-line vertex case. 1 remind the reader that a magnetic field 
derivative at a point is equivalent to a line in this counting. There are, of course, four 
derivatives of In 2 in d2X/aH2.  The class of graphs with one six-line vertex to be 
considered here is just: (a) polygons with one root at which the four derivatives act 
and (b) polygons with one root at which one, two, three or four linear chains are 
attached. In case (b) one derivative acts at the free end of each linear chain and the 
remainder act at the root point. As an aside, the point does not count as a polygon 
but the single, double-bond does. Using the results of Baker and Kincaid (1981), that 
the generating function of the linear chains (free multiplicities are used here) is 
[2dK/( 1 -2dK)], and the polygon generating function is 
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we obtain, using the standard sort of combinatorical factors (Wortis 1974), 

+464( d K ) 2  - 576(dK)3 +272(dKI4]} +O(& i o i o ,  1;). (11 )  

This equation can be combined with (Baker and Kincaid 1981) 

where m is the field theory renormalised mass and it measures the decay of the two-point 
correlation function as proportional to exp( - rm). If we fix our unit of length by m = 1 , 
then equations (7), ( 1  1 )  and (12) give 

g = 64-dK-2{24&, + 36010 + 30ioPd (K)[24 - 168dK +464( dK)' 

- 576(dK)' +272(dK)3]} +O(io, &Oxo, Xi). (13) 

We can make a few observations. First we now specialise to d = 3. Clearly K, = (2d)-'. 
It is simple to show from (10) that P3( K, - E )  = constant -constantJ&. Since this is 
the case, for any K O <  K, we can pick a value of io of the same order of magnitude 
as io so that g = 0, to leading order for that particular value of KO. We observe, because 
we may compute that the coefficient of io inside { } in equation (13) is monotonic 
increasing in K ,  that g < 0 for 0 < K < KO and g > 0 for KO < K < K,. If we choose 
io= -G5- 'K2,  with G small but of order one with respect to t-', and 

K O /  i o  = -4/ (60 + 5 P3(;)) (14) 

then we find in leading order that g a  - J K ,  - K a - 5-I as 5 + CO, as distinguished 
from g = +%A4 with the choice io= 0. We point out by ( 5 )  that, as for the choice (14) 
Koa [-I, so therefore, is A 6  also. Thus, A6 vanishes in the critical point limit, although 
as C in three dimensions is proportional to 5, h6C, which enters the definition of io, 
has a finite limit. These two models are manifestly different in that for i o = O ,  g is 
positive and goes to a non-zero value in the limit as the critical point is approached 
(continuum limit), while for choice (14) g is negative and vanishes in the critical point 
limit. 

I argue that, by an appropriate choice of io(io), the condition g = 0 can be met 
for a given KO, 0 < KO < K,( io, io), say KO =s,, for all 0 < io s 00, where for example 
0 < f <  1 is any fixed number. Certain basic properties are known, x and t2 are positive 
throughout the range by Griffith's first inequality (Ginibre 1970) and here all relevant 
quantities are continuous functions of go, io as long as K < K, (Baker 1975). For any 
single-spin distribution the expansion in powers of K is given through tenth order by 
Baker and Kincaid (1981). For the simple cubic lattice, it begins 

a2x/aH2 = (1, - 31:) +xI,(z,- 31:) K +3( -3031: +871:z4 + I ~ I ~  + 3 1 : ) ~ ~  +0( K 3, 

(15) 

where Zzn is the 2nth moment of the distribution of equation (6). From equation ( 1 9 ,  
it follows that if 1, = 3Z;, there is a double-zero at K = 0. This condition is always 
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possible as for fixed I,, go+ +00 forces 14+ I :  and io+ -CO forces 14/Zi to infinity, 
under condition (6). 

For the limit io+ 00, the family of single-spin distributions ( a  3 1)  becomes 

;( S ( s  - a )  + S ( S  + a ) ) / a ’  +[( a 2  - l)/a’]S(s) (16) 

where S(x) is the Dirac delta-function and the moments are IZn  = a2(”- ’ ) ,  n 3 1, IO= 1. 
The series for the simple cubic lattice is 

aZx/aH2 = -3 + a 2  +(-72 +24a2)K +(-909 +261a2 + 12a4)K2 

+(-8568+1812a2+288a4+4a6)K3+. . . (17) 

Numerical analysis indicates, starting with the spin-f king value a = 1, that a2x/aH2 
is negative at K = O  and that there are two complex zeros near the imaginary K axis 
which collide at K = 0 when a = 8 and move out of the positive and negative K axes 
with increasing a. By the time a = 5 all the known terms of (17) are positive and there 
is clear numerical evidence that a2x/aH2 is diverging to plus infinity rather than minus 
infinity as for a = 1. Hence, by continuity arguments there exists a least upper bound 
a, for all a’s which correspond to a2X/aH2 = 0 for KO< K , ( i ,  = a). Thus, for that 
a, we have at 1, = CO, a model of the same character, i.e., g < 0 for K < K, and g + 0 
as K + K, as for choice (14) for io= 0. This model is a completely legitimate, 
ferromagnetic Ising model (something like a spin-one model) and is in sharp contrast 
to the spin-f Ising model for which g > 0 for K < K,. 

We thus have seen that Kadanoff’s (1976) ‘(c) perhaps other criteria’ is not empty 
for the family of continuous-spin Ising model and must take account at least of s6 effects. 

To return to results of Baker m d  Johnson (1984) that y for the two-dimensional 
s4 ‘border’, continuous-spin Ising model differs from that for the spin-; Ising model, 
I remark that the extra freedom allowed in the model herein described may well apply 
to a pure s4 model as well because, following renormalisation group ideas, even if s6 
terms are not present in the original single-spin distribution function, they will surely 
be generated by the successive elimination of the short-range degrees of freedom in 
the system and hence may account for the limitation of universality they observed. 
The analysis of their two-dimensional system is more complex than the three- 
dimensional case treated here because all the simple powers s2” are relevant, but it 
seems implausible to suppose that universality is less affected there than in three 
dimensions. 

I am happy to acknowledge helpful discussions with F Cooper, G Guralnik, and J D 
Johnson. 
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